跳转至

chap 5

9 傅里叶级数

9.1 三角级数·三角函数系的正交性

傅里叶级数(三角级数)形式

{a_0\over 2} + \sum_{n=1}^\infin (a_n \cos nx + b_n \sin nx)

9.1 习题

9.2 函数展开成傅里叶级数

a_n = {1\over \pi} \int_{-\pi}^{\pi}f(x)\cos nx\ dx, n = 0, 1, 2, \cdots\\ b_n = {1\over \pi} \int_{-\pi}^{pi}f(x) \sin nx\ dx, n = 1, 2, \cdots.

Dirichlet收敛定理

设f(x)是周期为2\pi的周期函数,如果它满足,\\ \begin{align} (1)& f(x)在[-\pi, \pi]上连续或有有限个第一类间断点(左右极限都存在)\\ (2)& f(x)在[-\pi,\pi]上至多只有有限个严格极值点,即函数分段单调.\\ &则函数的傅里叶级数收敛,且\\ &{a_0\over 2} + \sum_{n=1}^\infin (a_n \cos nx + b_n \sin nx) = \begin{cases}f(x),& x为f(x)连续点\\ {f(x^-) + f(x^+)\over 2},& x为f(x)间断点.\end{cases} \end{align}

9.2 习题